

Initial ADS-B Observations

Martin Stevens
Raytheon Systems Limited

7th December 2005

Presentation Overview

- Overview of Raytheon ADS-B demonstrator
- Trials and initial results
- Levels of Equipage
- Observations

Overview of Raytheon ADS-B Demonstrator

Demonstrator Hardware Architecture

Software Architecture

Trials and Initial Results:

Harlow, UK

Harlow Antenna Configuration

- The antenna comprises two columns from our LVA antenna in a back-to-back configuration.
- This gives 360° of coverage.
- Each of the columns is fed into its own receiver / decoder channel.
- N-type connectors are used, allowing system performance to be evaluated with any standard antenna.

First Received Message at Harlow

Predicted Coverage from Harlow at 37,000 feet.

ADS-B Coverage from Harlow

ADS-B Coverage from Harlow

Trials and Initial Results:

Götzenhein, Germany

Götzenhein Antenna Configuration

At Götzenhein the ADS-B antenna elements have been positioned either side of the tower for 360° coverage.

Götzenhein Predicted Coverage

Götzenhein Coverage 20,000 ft

Götzenhein Radar and ADS-B Data

ADS-B Coverage to 250 NM

ADS-B Coverage to 150 NM

ADS-B Coverage to 60 NM

Radar and ADS-B Update Rates

The radar was rotating at 12 rpm (5 second update)

Radar - Site Effects

Trials and Initial Results:

Woodcock Hill, Ireland

ADS-B Equipment at Woodcock Hill

ADS-B Sector Antenna

Predicted Coverage at 37,000 ft.

Sector Antenna Coverage from Woodcock Hill Scimited

ADS-B Coverage from Woodcock Hill

Back-to-Back Antenna Configuration

- The antenna comprises two columns from our LVA antenna in a back-toback configuration.
- This gives 360° of coverage.
- Each of the columns is fed into its own receiver / decoder channel.

Back to Back Antenna Coverage from Woodcock Hill

Back to Back Antenna Coverage from Woodcock Hill

Individual Aircraft R/A Plots

BA Outbound

Virgin Inbound

Aircraft Climbing

Aircraft Squitter alternately from the top and bottom antenna.

Coverage at 15W - Sector Antenna

Coverage at 15W - Back to Back Antenna

Trials and Initial Results:

Les Platons, Jersey

Jersey Antenna Configuration

The ADS-B antenna elements have been positioned either side of the tower for 360° coverage.

Jersey Coverage Volume

Yellow = MSSR Green = ADS-B

Jersey Coverage Volume – Overnight Plot

Observations

CPR Decoding Problems

- Three tracks were observed to have bad position probably caused by an odd/even CPR correlation error.
- Two of these events were caused by the same aircraft.

Incorrect Plot Sequence

- Some aircraft appeared to output plots out of sequence.
- This effect was limited to a few aircraft.

Incorrect Position Plot

- Very occasionally a plot was output in the wrong place.
- It is thought that this was a result of an incorrect error correction operation.
- This type of error is easy to detect and suppress (but the demonstrator deliberately does not do this).

Continuously Incorrect Position

- One aircraft constantly reported a bad position.
- The track looks good on the face of it.

False "ON GROUND" Reporting

- One aircraft reported it was on the ground all the time.
- This problem was reported to the operator and was traced to the transponder control panel in the cockpit.
- The problem has now been fixed.

Summary

Summary

- Around half of all commercial aircraft are transmitting valid ADS-B messages. (This was around 10% a year ago.)
- Most of the rest are transmitting extended squitters, but without valid position data.
- Some aircraft transmit INS / FMS position which seems to be up to 2 miles away from the correct position, but these aircraft ALL seem to transmit a low figure of merit.
- The number of transponders transmitting incorrect data is very low (<1%).
- Very few aircraft (<5?) are transmitting false information and reporting it as valid.